ExTensor: An Accelerator for Sparse Tensor Algebra

Kartik Hegde¹, Hadi Asghari-moghaddam¹, Michael Pellauer², Neal Crago², Aamer Jaleel², Edgar Solomonik¹, Joel Emer^{2,3}, Christopher W. Fletcher¹

> ¹University of Illinois at Urbana-Champaign ²NVIDIA ³MIT

Efficient

Intersection

DRAM -> LLB

Efficient

Intersection

LLB -> PE

Efficient

Intersection at

PE level

1. DENSE/SPARSE TENSOR ALGEBRA

2. HIERARCHICAL INTERSECTION

Rapidly growing in importance across Computer Science! From Deep Learning to Recommendation Systems.

Core Challenges

1. Diversity of Tensor Algebra Kernels.

Intersection: Identifying regions of overlapped non-zero regions while multiplying two sparse data-structures.

Basic Opportunity: x * 0 = 0

$$Z_{i} = \sum_{i} A_{i}B_{i}$$

$$Z_{ij} = A_{ij} \sum_{k} C_{ik}D_{kj} \qquad Z_{ijk} = \sum_{i} A_{ijl}B_{kl}$$

$$Z_{ii} = \sum_{k} A_{ik}B_{ki} \qquad Z_{ij} = \sum_{k} A_{ijk}B_{k}$$

$$O_{xy} = \sum_{rs} I_{(x+r)(y+s)}F_{rs}$$

Significantly different compute characteristics!

2. Efficient Access & Compute on Sparse Data Structures

Extensor

- Fully *programmable* for Generalized Tensor Algebra.
- 2. *Hierarchical* Intersection to eliminate ineffectual work.

3. OPTIMIZED INTERSECTION METHODS

Key Insight

Above opportunity is applicable at different abstractions!

Leverage the **metadata** of compressed representations 3. to detect opportunities.

4. EXTENSOR ACCELERATOR DESIGN

Motivation DRAM Fast intersection is key to achieve high performance in Sequencer Sparse Tensor Algebra. + Scanners Last Level **Partial Output** Buffer (LLB) **Naive Intersection ExTensor Intersection** Buffer (POB) coordinator Stream A Stream A Stream B Stream B PEs: PE coordinator PE buffer skipRangelal 3 datapath 6 9

Walk step-by-step comparing the co-ordinates O(|StreamA U StreamB|)

Each Stream uses skipRange() to skip a range. $O(|StreamA \cap StreamB|)$

Extensor

- Specialized hardware to implement optimized intersection.
- 2. Hierarchically replicate the intersection logic.

