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Why Near-DRAM Acceleration?

® higher bandwidth demand but stagnant increase

v higher data rate and/or wider bus limited by signal integrity
package pin constraint
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Why Near-DRAM Acceleration?

® data transfer energy IS more expensive than computation
v’ disparity b/w interconnect and transistor scaling
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3D-stacked Near-DRAM Acceleration

® conventional architectures w/ expensive 3D-stacked DRAM

v' sacrifice capcity for bandwidth (BW)
o one memory module per channel w/ point-to-point connection

v" insufficient logic die space for accelerators (ACCSs)

o little space left for ACCs and/or higher BW for ACCs due to
large # of TSVs and PHYs

v not flexible after integration of ACCs w/ DRAM
o custom DRAM module tied w/ specific ACC architecture
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Background: DDR4 LRDIMM

® higher capacity for big-data servers
v' 8 LRDIMM ranks per channel w/o degrading data rate

® repeaters for data (DQ) and command/address (C/A) signals
v' aregistering clock driver (RCD) chip to repeat C/A signals
v’ data buffer (DB) chip per DRAM device to repeats DQ signals
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Proposal: In-Buffer Processing*

® Dbuilt upon our previous near-DRAM acceleration architecture

v’ accelerators (e.g., coarse-grain reconfigurable accelerator
(CGRA)) 3D-stacked atop commodity DRAM devices
o Farmahini-Farahani, et al. NDA: Near-DRAM acceleration
architecture leveraging commodity DRAM devices and
standard memory modules, HPCA 2015

® processor offloads compute- and data-intensive operations
(application kernels) onto CGRAS

v" CGRAs process data locally in their corresponding DRAM
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Proposal: In-Buffer Processing?

® place near-DRAM accelerators (NDA) in buffer chips

v’ require no change to
o processor

o processor-DRAM interface
o DRAM core circuit and architecture

v’ propose three Chameleon microarchitectures
o Chameleon-d, t and -s
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ACC-DRAM Connection: Chameleon-d 8

® allocate full DQ bus bandwidth to data transfer b/w ACC and
DRAM modules vertically aligned in a LRDIMM

v' 8-bit data bus b/w ACC and DRAM

® connect C/A pins to the RCD through BCOM bus (400MHZz)
v' RCD arbitrates among C/A requests of all ACCs
v limited bandwidth of the RCD becomes the bottleneck
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ACC-DRAM Connection: Chameleon-t

® DQ pins are temporally multiplexed b/w DQ and C/A signals

v previous DRAM shared I/O pins for C/A and DQ signals
o e.g., FBDIMM

v 1tCK, 1tCK, 2tCK for activate, pre-charge, and read/write
commands, respectively

v cons: a bubble cycle required for every read operation
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ACC-DRAM Connection: Chameleon-s

® DQ pins are spatially multiplexed b/w DQ and C/A signals

v' pros: avoids bubble for bus direction changes for every read
trans.

v" cons: burst length increased from 8 to 16 if 4 out of 8 lines are
used for data transfer
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Transcending Limitation of DIMMs

® no change to standard DRAM devices and DIMMs

® in NDA mode

v" no BW benefit w/ the same bandwidth as traditional DIMMs?

v DRAM devices coupled w/ accelerators can be electrically

disconnected from global/shared memory channel

o short point-to-point local/private connections b/w DRAM and
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Gear-up Mode

® short-distance point-to-point local/private connections allows
v higher I/O data rate w/ better channel quality b/w DB and DRAM
device (from 2.4GT/s to 3.2GT/s)
o DRAM device clock is remains intact
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DB to DRAM (Tx) at 3.2GHz DRAM to DB (Rx) at 3.2GHz

v’ scaling aggregate bandwidth w/ more DIMMs

o ACCs concurrently accessing coupled DRAM devices across
multiple DIMMs

compensating the bandwidth and timing penalty incurred by
Chameleon-s and Chameleon-t



Evaluated Architectures

: # of .
Architecture ACCS Description

Baseline - 4-way 000 processor at 2GHz
ACCinCPU 32 |32 on-chip CGRAs co-located with the processor
ACCInDRAM 32 |4 CGRAs stacked atop each DRAM [HPCA'2015]
Chameleon 32 |4 CGRAs ineach DB device

® accelerator
v’ coarse-grain reconfigurable accelerator (CGRA) w/ 64 FUs

® LRDIMM w/ DDR4-2400 x8 DRAM devices

® area of CGRA w/ local memory controller

v’ ~0.832 mm2 for 64-FU CGRA + ~0.21 mm2 for MC, fitting in a
DB device

® benchmarks
v" the same ones used in “"NDA” in HPCA’2015
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Speedup

v' Chameleon-s x6 (6 and 2 pins for data and command/address)
o 96% performance of ACCinDRAM w/ gear-up mode

® Chameleon-s & -t offer competitive performance compared to
ACCINnDRAM relying on 3D-stacking ACCs atop DRAM

o 3% better than Chameleon-t w/ no bubble for every read
o 9%/17% higher performance than Chameleon-s x5/x4
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Speedup

® Chameleon architectures scale w/ # of LRDIMMSs

v' ACCinCPU performance marginally varies w/ # of ACCs
v' each Chameleon LRDIMM operates independently

o for 1, 2, and 3 LRDIMMs , Chameleon-s x6 performs 14%,
74%, and 113% better than ACCIinCPU, respectively
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Conclusions

® Chameleon: practical, versatile near-DRAM acceleration
architecture

v’ propose in-buffer-processing architecture, placing accelerators in
DB devices coupled w/ commodity DRAM devices

v" require no change to processor, processor-DRAM interface, and
DRAM core circuit and architecture

v achieve 96% performance of (expensive 3D-stacking-based) NDA
architecture [HPCA’2015]

v improve performance by 14%, 74%, and 113% for 1, 2, and 3
LRDIMMs compared w/ ACCinCPU

v reduce energy by 30% compared w/ ACCinCPU



