Analyzing the Performance Benefit of Near-Memory Acceleration based on Commodity DRAM Devices

> Hadi Asghari-Moghaddam and Nam Sung Kim University of Illinois at Urbana-Champaign

Why Near-DRAM Acceleration?

- higher bandwidth demand but stagnant increase
 - higher data rate and/or wider bus limited by signal integrity package pin constraint

SUHD/3D-graphics

scientific/engineering

computer vision

http://www.maltiel-consulting.com/ISSCC-2013-Memory-trends-FLash-NAND-DRAM.html

Why Near-DRAM Acceleration?

- data transfer energy is more expensive than computation
 - disparity b/w interconnect and transistor scaling

Keckler MICRO'11 Keynote talk: "Life After Dennard and How I Learned to Love the Picojoule"

3D-stacked Near-DRAM Acceleration

- conventional architectures w/ expensive 3D-stacked DRAM
 - ✓ sacrifice capcity for bandwidth (BW)
 - o one memory module per channel w/ point-to-point connection
 - ✓ insufficient logic die space for accelerators (ACCs)
 - little space left for ACCs and/or higher BW for ACCs due to large # of TSVs and PHYs
 - not flexible after integration of ACCs w/ DRAM
 o custom DRAM module tied w/ specific ACC architecture

Decoupling Cap				
Power Probe PADs (microbump depopulated)				
Channel Channel Channel Channel Channel Channel Channel Channel Channel	Channel 1 TACK 7D 0	801 802 803		
Admel Admel Admel bannel hannel aannel aannel Admel bannel Sannel	A hamed MID S DWOI	DWOI DWOI DWOI		
	PHY	มหาหลายเร อ สหร ะเป ลา มนายามสาว		
TSV Area (Base-Core Connection)				
lest Port Area (Direct Access)				
	IEEEISUU	HBM ballout area		
	MBIST	6,050x3,264 μm		

Background: DDR4 LRDIMM

- higher capacity for big-data servers
 - ✓ 8 LRDIMM ranks per channel w/o degrading data rate
- repeaters for data (DQ) and command/address (C/A) signals
 - ✓ a registering clock driver (RCD) chip to repeat C/A signals
 - ✓ data buffer (DB) chip per DRAM device to repeats DQ signals

Proposal: In-Buffer Processing¹

- built upon our previous near-DRAM acceleration architecture
 - ✓ accelerators (e.g., coarse-grain reconfigurable accelerator (CGRA)) 3D-stacked atop commodity DRAM devices
 - Farmahini-Farahani, et al. NDA: Near-DRAM acceleration architecture leveraging commodity DRAM devices and standard memory modules, HPCA 2015
- processor offloads compute- and data-intensive operations (application kernels) onto CGRAs
 - ✓ CGRAs process data locally in their corresponding DRAM

Proposal: In-Buffer Processing²

7

- place near-DRAM accelerators (NDA) in buffer chips
 - ✓ require no change to
 - o processor
 - processor-DRAM interface
 - o DRAM core circuit and architecture
 - propose three Chameleon microarchitectures
 Chameleon-d, t and -s

ACC-DRAM Connection: Chameleon-d

- allocate full DQ bus bandwidth to data transfer b/w ACC and DRAM modules vertically aligned in a LRDIMM
 ✓ 8-bit data bus b/w ACC and DRAM
- connect C/A pins to the RCD through BCOM bus (400MHz)
 - ✓ RCD arbitrates among C/A requests of all ACCs
 - ✓ limited bandwidth of the RCD becomes the bottleneck

ACC-DRAM Connection: Chameleon-t

- DQ pins are temporally multiplexed b/w DQ and C/A signals
 - ✓ previous DRAM shared I/O pins for C/A and DQ signals
 o e.g., FBDIMM
 - ✓ 1tCK, 1tCK, 2tCK for activate, pre-charge, and read/write commands, respectively
 - ✓ cons: a bubble cycle required for every read operation

ACC-DRAM Connection: Chameleon-s

10

- DQ pins are spatially multiplexed b/w DQ and C/A signals
 - pros: avoids bubble for bus direction changes for every read trans.
 - cons: burst length increased from 8 to 16 if 4 out of 8 lines are used for data transfer

Transcending Limitation of DIMMs

no change to standard DRAM devices and DIMMs
 ✓ no BW benefit w/ the same bandwidth as traditional DIMMs?

in NDA mode

- DRAM devices coupled w/ accelerators can be electrically disconnected from global/shared memory channel
 - short point-to-point local/private connections b/w DRAM and DB devices

Gear-up Mode

short-distance point-to-point local/private connections allows

- higher I/O data rate w/ better channel quality b/w DB and DRAM device (from 2.4GT/s to 3.2GT/s)
 - o DRAM device clock is remains intact

DB to DRAM (Tx) at 3.2GHz

DRAM to DB (Rx) at 3.2GHz

- ✓ scaling aggregate bandwidth w/ more DIMMs
 - ACCs concurrently accessing coupled DRAM devices across multiple DIMMs

compensating the bandwidth and timing penalty incurred by Chameleon-s and Chameleon-t

Evaluated Architectures

Architecture	# of ACCs	Description		
Baseline	-	4-way OoO processor at 2GHz		
ACCinCPU	32	32 on-chip CGRAs co-located with the processor		
ACCinDRAM	32	4 CGRAs stacked atop each DRAM [HPCA'2015]		
Chameleon	32	4 CGRAs in each DB device		

• accelerator

- ✓ coarse-grain reconfigurable accelerator (CGRA) w/ 64 FUs
- LRDIMM w/ DDR4-2400 ×8 DRAM devices
- area of CGRA w/ local memory controller
 - ✓ ~0.832 mm2 for 64-FU CGRA + ~0.21 mm2 for MC, fitting in a DB device
- benchmarks
 - ✓ the same ones used in ``NDA'' in HPCA'2015

Speedup

- Chameleon-s & -t offer competitive performance compared to ACCinDRAM relying on 3D-stacking ACCs atop DRAM
 - ✓ Chameleon-s x6 (6 and 2 pins for data and command/address)
 - 96% performance of ACCinDRAM w/ gear-up mode
 - o 3% better than Chameleon-t w/ no bubble for every read
 - o 9%/17% higher performance than Chameleon-s x5/x4

Speedup

- Chameleon architectures scale w/ # of LRDIMMs
 - ✓ ACCinCPU performance marginally varies w/ # of ACCs
 - ✓ each Chameleon LRDIMM operates independently
 - o for 1, 2, and 3 LRDIMMs , Chameleon-s x6 performs 14%, 74%, and 113% better than ACCinCPU, respectively

Conclusions

- Chameleon: practical, versatile near-DRAM acceleration architecture
 - propose in-buffer-processing architecture, placing accelerators in DB devices coupled w/ commodity DRAM devices
 - ✓ require no change to processor, processor-DRAM interface, and DRAM core circuit and architecture
 - ✓ achieve 96% performance of (expensive 3D-stacking-based) NDA architecture [HPCA'2015]
 - ✓ improve performance by 14%, 74%, and 113% for 1, 2, and 3 LRDIMMs compared w/ ACCinCPU
 - ✓ reduce energy by 30% compared w/ ACCinCPU